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REFLEXION LEVELS AND COUPLING REGIONS IN A
HORIZONTALLY STRATIFIED IONOSPHERE

By M. L. V. PITTEWAY
Mathematical Laboratory, University of Cambridge

(Communicated by J. A. Raicliffe, F.R.S.—Received 27 February 1959)
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The propagation of radio waves through a horizontally stratified and slowly varying ionosphere is
governed, in the case of oblique incidence, by a quartic equation (Booker 1938). Ray theory breaks
down when two roots of this quartic are equal, for then coupling occurs between the characteristic
waves, and full wave theory must be used.

This paper is concerned with determining the conditions under which the two roots are equal;
it is not concerned with the full wave theory. Values of the plasma frequency, and electron collision
frequency, which lead to equal roots, are determined, and are exhibited in a set of curves. A full
solution of the ‘Booker’ quartic is also given for a case of special interest.

It is pointed out that the electric wave-field is unlikely to become very large in a slowly varying
ionosphere, so that, if the ionosphere were irregular, scattering cannot be unduly enhanced by a
plasma resonance.
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1. INTRODUCTION

In a recent paper (Budden & Clemmow 1957), the equations governing the propagation of
radio waves in a slowly varying and horizontally stratified ionosphere are written in a

Y B \

— coupled form, and a ray-theory type of solution, valid where coupling between characteristic
§ > waves in the ionosphere is not too large, is given.

@) E Itis the purpose of this paper to investigate the levels in the ionosphere at which coupling
= between the characteristic waves becomes infinite, and ‘critical coupling’ is said to occur
E 8 (e.g. Davids & Parkinson 1955). At these levels, ray-theory approximations break down. At
~w normal incidence, the problem of coupling has been fairly thoroughly studied; in this paper,

the problem of coupling is extended to include oblique incidence.

For the case of oblique incidence, the Appleton—Hartree equation for the refractive
index (Appleton 1932) is replaced by the Booker quartic (Booker 1938) which is used to
study propagation in a horizontally stratified slowly varying ionosphere. Coupling is strong
near the levels in the ionosphere at which two roots of the Booker quartic become equal,
(see, for example, Budden & Clemmow 1957), and so this paper is concerned chiefly with
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54 M. L. V. PITTEWAY ON THE

finding the condition satisfied by the ionospheric parameters for the quartic to have two or
more equal roots.

The importance of this work lies in the fact that it is very difficult to understand what 1s
happening to a wave propagated through the ionosphere, except in terms of a simple ray-
theory picture, and before this picture can be fully understood it is necessary to know both
where the reflexion levels lie, and where coupling between the ordinary and extraordinary
wave packets is considerable. This is necessary not only when investigating, say, the ampli-
tude of the reflexion of a wave from the ionosphere, or the phase path of a wave packet, but
also in a theory of scattering (Pitteway 1958), where it is necessary to find the levels in the
ionosphere where fading may be imposed upon a radio wave. In a scattering problem, the
scattered waves are oblique even though the original wave may be incident normally, and
it is important that the problem of oblique incidence should be fully understood.

It is shown in this paper that a resonance effect associated with very large electric wave-
fields, familiar at the level X =1 for an isotropic ionosphere, is present in the Booker
quartic (contrary to previous expectations that such a resonance is only shown by a full-
wave solution of the differential wave equations), and that when the earth’s field is included
it is only the extraordinary wave (for frequencies above 1-28 Mc/s), which shows this
resonance. Now the extraordinary wave is reflected at an ionospheric level well below the
point of resonance, and so an appreciable resonance can only be excited if some extra-
ordinary wave is coupled in by the ordinary wave higher in the ionosphere. At normal
incidence, this can happen only if there is some collisional damping present to give the
necessary coupling condition, and this in itself will completely suppress any resonance
effect (Pitteway 1958).

At oblique incidence, however, it is shown that coupling can occur even though the
collisional damping be very small; this is because the wave normals are not constrained to
lie parallel to the vertical as they are for normal incidence. It is shown that the critical
coupling can occur for as many as seven different values of the ratio between plasma and
wave frequencies, even with no collisional damping.

Now ray theory fails when either

(i) two roots of the quartic become equal, or

(ii) one root of the quartic becomes infinite, and in both cases a more detailed study of
the differential wave equations is needed. In case (i), the differential equation reduces to
Stokes’s equation, (except at the penetration of a layer in the ionosphere), and the solutions
are Airy integral functions. The point where the two roots are equal is an ordinary point
(in the complex plane) of the differential equation, and the equation has no singularity.
Thus, although a ray-theory approximation breaks down when two roots are equal, the
solutions of the differential equation remain finite, and the electric wave-fields have no
singularity.

For case (ii), a number of special cases have been studied, (Forsterling & Wister 1951;
Budden 1954), and solution of the differential equations show that in every case the electric
wave-field has a singularity. This singularity can be attributed to a plasma oscillation and
resonance due to induced space charges (e.g. Herlofson 1951), and we shall therefore speak
of case (ii) as a resonance; it is inferred that a full solution of the differential equation will
always show a singularity when one of the quartic roots is infinite.
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COUPLING REGIONS IN A STRATIFIED IONOSPHERE 55

For the case of normal incidence, it has been shown (Budden 1954) that no reflexion takes
place at a singularity in the Appleton-Hartree refractive index, and the concept of a
‘fourth reflexion condition’ for radio waves is discredited. Further, absorption at the
singularity is considerable even though the collision frequency may be much less than the
wave frequency.

In this paper, it is shown that for propagation at oblique incidence (not in the East-West
planc), the Booker quartic has only one infinite root at the singularity, and that there is a
separate reflexion level nearby. As normal incidence is approached, this reflexion level
moves closer to the singularity, until at normal incidence the quartic has two infinite roots
there. In this sense, there is a ‘reflexion level’ included in the singularity for normal in-
cidence; absorption at the singularity is, however, so large that this reflexion is completely
lost (in agreement with Budden 1954). For oblique incidence at low frequencies in the
North-South plane, this reflexion level moves well away from the highly absorbing re-
sonance level, and as it is now quite distinct it may be of physical importance.

Section 3 of this paper is devoted to a brief summary of the results of previous work, and
the fourth to deriving the condition for the Booker quartic to have two equal roots. Special
cases are discussed at length in § 5, and in § 6 graphs of reflexion and coupling levels are given
as a function of the angle of incidence. In §7 the actual solutions of the quartic are discussed
for a case of particular interest.

2. NOTATION

The notation adopted in this paper is esscntially the same as that of previous workers.
All electric and magnetic quantities are in rationalized units. Some of the more important
symbols used are listed below:

x,y,z Cartesian co-ordinates; z is measured vertically upwards, and incidence is restricted
to the x, z plane

angle of incidence

sin 6,

cos Y,

direction cosines of the carth’s magnetic field

S
3

angular wave frequency

earth’s magnetic induction

charge and mass of the electron

clectric permittivity of free space

number of electrons per unit volume

collision frequency of the electrons, giving damping

Ne? e, mw?

eB/mw

v/w

1—-iZ

a root of the Booker quartic

/7,0, ¢ coefficients of the Booker quartic, F(g) = 0
y?-—4ae
A--po

ANN*T =S S mE T ows

K=

£
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56 M. L. V. PITTEWAY ON THE
B B, where B = f2X?(U—X)
X,Z, values of X and Z which together give coupling between the ordinary and extra-

ordinary waves. (This is not quite the same as the conventional usage, in which
Z, = |Y2/2Y;|; at vertical incidence only, the two definitions of Z_are equivalent.)

The notation used for labelling figures is outlined in § 6.

3. PrEVIOUS WORK

The problem of radio-wave propagation in a given direction through a homogeneous
medium has been extensively studied (e.g. Appleton 1932; Ratcliffe 1933).

In a classic paper (Booker 1938), it has been shown that when a plane wave is incident
obliquely onto a stratified ionosphere which varies slowly in the vertical direction, its
behaviour is represented by a quartic equation, the ‘Booker’ quartic. The four roots of
this quartic give, as a function of height, the behaviour of four distinct waves, corresponding
to upgoing and downgoing ordinary and extraordinary waves. These roots can be complex,
and when this happens the corresponding wave is attenuated as it travels through the
ionosphere.

More recently this work has been extended (Clemmow & Heading 1954; Budden &
Clemmow 1957), and it has been shown that the four roots of the quartic are the latent roots
of a tensor which governs the wave propagation; the wave equation can be written in a
coupled form, and for a slowly varying ionosphere the coupling can be ignored except in
regions where two roots of the quartic approach closely. When the coupling can be ignored,
the solutions of the tensor wave equation correspond to the four characteristic waves.

If two roots of the quartic are almost equal, ray theory breaks down, and energy is
exchanged between the two waves concerned. Thus if the two roots corresponding to the
upgoing and downgoing ordinary wave approach, this transfer of energy represents reflexion
of the ordinary wave. If the two roots corresponding to the upgoing ordinary and extra-
ordinary wave, say, approach, these two waves cease to travel independently, and an
upgoing ordinary wave will excite some extraordinary, and vice-versa.

In general, the coeflicients a, £, y, 8, ¢ of the Booker quartic (see equation (1)) are functions
of the electron density variable X, and the collisional damping variable Z, where X and
Z are purely real; in the case when Z = 0, the coefficients «,f,7,d,¢ are all real. For
reflexion, the roots of the quartic are equal only when Z is zero, and for certain critical
values of X; if Z never becomes sufficiently small for reflexion to occur, very little energy is
returned, and this means that most of the wave is attenuated and lost.

For critical coupling between the ordinary and extraordinary waves, however, it is often
necessary to have a non-zero value of Z, written Z,, before the two roots can approach. The
values of ¢ are of necessity complex when a non-zero value of Z is to be introduced, and the
condition that both the real and imaginary parts of a pair of roots should be equal gives two
equations specifying simultaneously the critical value of X and Z.

For the special case of propagation in the East-West plane, the coeflicients of ¢° and ¢ in
the quartic, # and d respectively, both vanish, and the equation becomes a quadratic in
the variable ¢2. The problem of finding the values of X and Z for which this quartic has equal
roots is easy; one set of equal roots occur when ¢ is zero, giving two equal zero roots of the
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COUPLING REGIONS IN A STRATIFIED IONOSPHERE 57

quartic; these correspond to reflexion. Another set are equal when y2 = 4ae, and this
condition corresponds to coupling between the ordinary and extraordinary wave in both
the upgoing and in the downgoing directions. There are also two infinite roots of the quartic
when «'= 0; this corresponds to a ‘resonance’, where the electric wave-fields obtained by
solving the differential equations have a singularity.

Normal incidence is included in the above calculation as a special case of East-West
propagation. The quartic also reduces to a quadratic in ¢? if the earth’s magnetic field is
horizontal, and this is another simple case. It is the purpose of this paper to investigate the
more difficult problem when f and ¢ are not zero, and the quartic equation cannot be
simplified in this way.

4. GENERAL THEORY

The quartic equation derived by Booker (1938), governing the propagation of a plane
radio-wave incident obliquely onto a slowly varying stratified ionosphere, may be written
in the notation here adopted

F(q) = ag*+pg* +y4* +0g+e = 0, (1)
where 0= U(U2—Y2) — X(U?—n2Y?) = U2(U—X) — Y2(U—n2X),
B = 28XInY?,
y = —2U[(C?U—X) (U—X) — C?Y?] — XY2(1 — 282+ n2C?), (2)

0= —285C2XInY? = —C?%,
e=(CU—-X)[(C?U—-X) (U—-X)—(C?2Y?] —-S$2C?Y2[2X.
In this paper, we are concerned with the condition imposed upon the coeflicients

a, f, 7, 0, € in order that (1) should have two equal roots, ¢, = ¢, say. It is well known that
(1) will have two equal roots if

oF
(-@) . (3)
Differentiating (1), we have e
4aq3+3f¢*+2yq+J = 0. (4)

Thus for the quartic to have two or more equal roots, the values of X and Z, (U = 1—iZ),
must be so chosen that it is possible for ¢ to satisfy (1) and (4) simultaneously. Itis convenient
to eliminate ¢ between these two equations, obtaining a condition on «, f, v, 0 and ¢ alone.
This is done by eliminating successively ¢4, ¢%, ¢ and ¢ to give

0 0 4o 38 2y ¢
0 0 f 2y 30 d4e
0 4a 38 2y & O
0 f 2 30 4 0
40 38 2y & 0 O
f 2y 30 4 0 0

=0, (5)

and this determinant of order six can be reduced to the symmetric third-order determinant
8ay — 3(32 6ad — fy 160e—f0 |

6ad—pfy dae—y:+260 6ef—yd | = 0. (6)
160 — 0 6¢f—y0 8ecy — 302
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The central term in (6) contains the term (y2—4ae¢), which is a factor of some importance
in the East-West case when £ and ¢ are both zero, and it is convenient to write

4 =y>—4ae
= X2Y?[V2(1—1252—n2C?)2+4(U—X) (UPS%+ Un?C?*—n2X)]. (7)

Another simple combination of the quartic coefficients occurring in the expansion of (6)

is defined by B = ad?+-¢f%—fyd
= p2X2(U—X). (8)

The terms in the expansion of (6) may be grouped to give, at length,
16(A+p0)3—16y2(A+f0)%+ 144yB(A+p0) +108B2—128y°B = 0.

Write % for (44 48), B for 1B, (B contains a factor 4 through the term f#?), and divide by 16.
We have 93 —y202 1 18yBA 4 27B2— 163 = 0, (9)
and this is the required expression, which gives the condition that the Booker quartic should
have two equal roots. It is especially convenient in that only three separate functions of
X and Z, %, B and y are involved, instead of the five expressions a, f, 7, d and ¢ originally
present.

The left-hand side of equation (9) contains the obvious factor X*Y*, as each term contains
this factor. This leads at once to the trivial cases:

(i) X = 0. In free space below the ionosphere there is no distinction between ordinary
and extraordinary waves in the upward or in the downward directions, and these waves will
have equal values of g.

(ii) Y = 0. Again, thereis no distinction between ordinary and extraordinary waves in the
isotropic ionosphere resulting when ¥ = 0, and the corresponding roots of the quartic will
be equal for all values of X and Z.

We can now remove this factor X*Y*, which shows an improvement on the determinant
forms (5) and (6) in which the factor is certainly not obvious. Other conditions for equal
roots are obtained by searching numerically for the zeros of the remaining function, and this
has been done on a digital computer. But first it is of interest to consider some special cases.

5. SPECIAL CASES

In the previous section, a function of X and Z, given by equation (9), has been derived,
the zeros of which give the conditions for the Booker quartic (1) to have equal roots. For
the case when Z is zero (and U is thus unity), the function is purely real—a polynomial
function of X—the zeros of which give the reflexion levels in the ionosphere. Some of these
zeros will correspond to real values of X, and others with complex values of X will not be
considered here. When Z is non-zero, the function is complex, and a numerical search is
necessary to find values of X and Z which together make both the real and imaginary parts
of (9) zero simultaneously.

In this section, partly as a check on the analysis, it is of interest to consider certain special
cases.
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(a) East—West

For East—West propagation, the direction cosine / of the earth’s magnetic field vanishes,
and so f and 0 both vanish, leaving a quadratic equationin ¢2. In (9),% = 4, and 8 vanishes.
The condition for equal roots becomes

A2(4—p) = o,
ie. —4ae(y?—4oe)? = 0,
thus either (i) ¢ == 0, or (ii) « = 0, or (iii) (y?—4ae?)? = 0.

Case (1) ¢ =0
Since § = 0, this gives equal roots at ¢ = 0 for Z = 0, X = C? (ordinary reflexion level),

or Z=0and
(C?*—X) (1—-X) = C?Y?,

ie. X = M1 +C2t J(S-+4C2Y2)},

(the two extraordinary reflexion levels). In the case when Y > 1, one of the extraordinary
reflexion levels occurs for negative (non-physical) values of X, as is well known.

Case (ii). & =0

Since £ = 0, two roots of the quartic are infinite when a = 0, and as the differential
equation in the electric fields shows a singularity at this point, the electric wave-field
becomes infinite, and a resonance occurs. (In the more general case when £ is not zero, the
zero of (9) moves away from the point where & = 0; one of the roots only goes off to infinity,
and there is an extraordinary reflexion level nearby.) This resonance with ¢ = 0 requires

Z=0,X=(1-Y?/(1—n2Y2).
Case (iii). (y?—4a6)?2 =0

This is more interesting, and gives for the East-~West case the condition for critical
coupling between the ordinary and extraordinary waves, an extension to oblique incidence

of the work of Davids & Parkinson (1955). We require 4 to be zero for the case when [/ = 0
and the factor X2Y?2 is discarded, i.e. from (7)

Y2(1—-n2C?)24+-4(U—-X) n?(C?°U—X) = 0.
Equating real and imaginary parts,
Y2(1—n2C?)24-4(1—X) n%(C?— X) — 4n2C?Z2 = 0,
and Z[4n*(C?2—X) +4n2C%(1 - X)] = 0.

. et YA1—n2C?)? St
We have either .X; ﬁl—_F”C,E, Z,;**A/( 4n2C? —(1+02)2)3

2(1 — n2(2\2
or XCH—_%[HCZ%/(S‘*—-&—MLC—))]; Z, = 0.

Itisinteresting to observe that for oblique incidence it is possible to have coupling between
the ordinary and extraordinary wave-fields, even though Z may be zero and no collisional
damping is present. This does not occur for vertical incidence, where the values of g are the
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same as x given by the Appleton—-Hartree formula (Appleton 1932). This is because, at
normal incidence, the ordinary and extraordinary wave normals are everywhere parallel,
whereas, at oblique incidence, in general they are not. Some curves are plotted for East—
West coupling at a later stage in this paper, where the manner in which the curves of X, for
zero and non-zero values of Z, link is illustrated.

Itisinteresting to see that for the East-West case, the critical coupling term 4 = 0 occurs
as a factor 42. This is because, for this special case, critical coupling between the upgoing
ordinary and extraordinary waves occurs at the same values of X, and Z, as the downgoing
waves, so the factor 4 occurs twice.

(b) Normal incidence

This may be regarded as a special case of East-West propagation, and the results are well
known. We replace § by 0 and C by 1 in the East-West work, and we have reflexion levels
for X = 1 (ordinary) and for X = 1+ 7Y (extraordinary), resonance at

X = (1-¥)/(1-mY?),

and critical coupling between the ordinary and extraordinary waves when X =1 and
Z, = Y(1—n?)/2n. There is no critical coupling with Z_ = 0 for real values of X.

In interpreting the graphs drawn for the general case at a later stage in this paper, it is
helpful to understand what happens to a wave-packet incident normally, so that the
different regions of propagation and reflexion may be identified. This work is familiar to
most radio physicists, and is given in some detail in Ratcliffe (1959).

(¢) Earth’s field horizontal

On the geomagnetic equator, the n-direction cosine of the earth’s field vanishes, and
f and J are again zero. Reflexion levels occur where ¢ = 0, and critical coupling occurs

where Y2(1—[282)2+ 4URS2(U—X) = 0,
2(1—[252)
1e. =2, Z = A/(Y 112,5{25' ml‘)’
Y2(1-—-1252)
or X, = ”‘(Zl’z G2 +1, Z,=0.

From this, and from case (4), we can see that there can be no ordinary—extraordinary
coupling for East-West propagation at the geomagnetic equator where / =7 = 0, and
4 = X?Y4

Resonance occurs where Z = 0 and X = (1—1Y2).

(d) Y =0, no field
In the limiting process Y — 0 it is useful to discard the trivial root ¥*in (9), leaving
—64U2(U—X)* (C?U—-X)2 X U(I252 —n2C?) +n2X]% = 0;

the factor (U— X)*gives the Herlofson resonance level at X = 1, Z = 0 and (C?U— X)? gives
the reflexion level at X = C?%, Z = 0. The last factor gives the level at which critical coupling
might be expected for small values of Y.
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COUPLING REGIONS IN A STRATIFIED IONOSPHERE 61

Discarding the term in Y* before allowing Y to become small has led to a very important
point. With Y = 0, the Booker quartic reduces to
(U—X) (Ug?—C?U-+X)? =0,
X

giving q* = CQ_U' (10)

This shows no singularity at X = 1, Z == 0, and it is natural to think that the singularity in
E and E, at X = 1, Z = 0 must arise from some feature of the full-wave solution. But the
limiting process ¥ — 0 shows that the Booker quartic really contains this singularity. This
point may be brought out by writing the Booker quartic, from (1) and (2), in the form

(U—-X)[U(g?—C?) +X]? == Y*(¢*—C?) [U(¢*— C*) + X{1 = (iS+-ng)%}]. (1)
In the special case when X = 1 and Z = 0, the left-hand side of (11) vanishes. We may
divide the right-hand side by Y2, and the roots are

g=+C or In+im).

S
=
For any value of ¥, however small, the solutions of the quartic will be 4+ C, and two other
roots, which depend upon the direction cosines of Y, and are indeterminate when Y == 0.

In the special case when Y == 0, the right-hand side of (11) vanishes, the factor (U —X)
divides out, and we have equation (10). Now ifweset X = 1 and Z = 0, we obtain g2 = —§2,
two equal roots at +1$ and two equal roots at —iS. Clearly, the limiting processes ¥ — 0,
and (U—X) — 0, may not be reversed, and the resonance at X = 1 really is concealed in the
Booker quartic.

(¢) North—South

For the case of propagation in the North—South plane, the direction cosine m vanishes, so
that /2+n? = 1. Itcan easily be shown that (9) vanishes in the North—South case at all angles
of incidence at the point where X = 1 and Z = 0, a well-known special case. It is of some
interest to remove the factor (U— X) from (9), and to investigate the condition that there
should be a second solution of (9) at X = 1, Z == 0; this can also be done quitc simply, and it
is found that a second zero of (9) occurs if

(i) C? = 0, grazing incidence, or

(ii) C? = n? (labclled B on graphs), or

(i) S$%(1—Y?)+4-20252Y2—[*Y? = 0,

Y
S — 4 A/Y}—f (labelled 4,, 4,).

This is in agreement with previous workers, and provides a useful check on the numerical
work for the North-South case. Other solutions of (9) for North—South propagation are
complicated, and are best found numerically.

(f) Grazing incidence

For grazing incidence, it can be shown that the function (9) has no simple roots, except
onc at X = 1, Z = 0 corresponding to the extraordinary reflexion level. This justifies the
numerical methods of the next section, for it follows that in general (9) will have no useful
factors, and no useful result can be expected from a detailed algebraic manipulation of (9).

8 VoL. 252. A.
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6. NUMERICAL WORK

Before applying numerical methods to search for the zeros of (9), it is useful to consider
the symmetry of the problem, with a view to avoiding unnecessary repetition of calculations.
For example, the coefficients «, f, 7, d, ¢ involve Y only through the square Y2, and are
invariant to a change of sign of Y. This means that we may change the sign of ¥ without
altering the solutions of the quartic.

If 4, the angle of incidence, is changed in sign, S changes sign; the coefficients f and J
change sign, while «, y and ¢ are unaltered. Thus the signs of the four roots of the quartic are
reversed, and two equal roots remain equal. It follows that the values of X and Z which
make (9) vanish are unaltered, and this is obvious in (9), for . is involved only as $2.

Further symmetry is introduced by the occurrence of / as /2 only in (9), for / also affects the
sign of just £ and §; thus a change of the plane of incidence which just changes the sign of /
will not alter the zeros of (9), and the reflexion and coupling regions will be the same, for
example, in all four possible directions midway between North—South and East-West,

that is,
NE - SW, SW->NE, NW->SE and SE - NW.

In preparing numerical work, full advantage was taken of this symmetry, and the program
of work included an investigation in the E — W plane (hence also W - E), N - S (hence,
also S — N), and the midway general azimuth case.

A program for EDSAC II, the digital computer in the Mathematical Laboratory,
University of Cambridge, has been devised to search for the zeros of the function given by (9).
This program set the computer to read in an approximate solution, X and Z, and the machine
then proceeded to calculate the function for this X and Z, and also at two neighbouring
values of X and Z. When this had been done, the computer used the values at the three
points to calculate approximate values for the gradients, and thus an improved value for X
and Z, this whole cycle taking about one-tenth of a second. Some ten or twenty cycles were
usually sufficient to define X and Z with five-figure accuracy, (though occasionally, when
two zeros occurred for nearly equal values of X and Z, longer was necessary). The machine
then punched out the value of X and Z derived, solved the Booker quartic as a check, (and
to identify whether the zero was a reflexion level or a coupling region), and then proceeded
to the next calculation. :

Some of the results of this work are shown graphically in figures 1 to 10, pp. 67 and 68,
where, for different values of ¥, and for different planes of incidence, values of X and Z
which satisfy the condition (9) are plotted as functions of 4,, the angle of incidence. Values
of X are shown by a continuous line, and values of Z by a broken line. The curves are
labelled according to the following code:

o Ordinary reflexion level; this gives the value of X at which the wave packet with ordinary
polarization will be reflected, and it is understood that the value of Z associated with
this X is zero. In all cases, o drops from X = 1 at normal incidence to X = 0 at grazing
incidence.

E Extraordinary reflexion level; this also must be associated with Z = 0. For ¥ < 1, there
are two curves for E reflexion, as would be expected from the normal incidence case.
For Y > 1, there is only one curve.
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R Again associated with Z = 0, this is an E-reflexion level occurring near the point where
« = 0 and one root of the quartic is infinite. R stands for resonance, because for normal
incidence, or East—~West propagation, this occurs at exactly the point where & = 0 and
resonance occurs. It is only for oblique incidence out of the East-West plane and away
from the geomagnetic equator that the R curve is distinguished from the resonance at
a=0.

X, Z, Values of X and Z at which ‘critical coupling’ occurs, that is, coupling between

-ordinary and extraordinary waves. For the East-West special case the upgoing waves
couple together at the same values of X and Z as the downgoing waves, and there is only
one X, Z_curve. More generally, there are two sets of curves, X ,, Z,, and X ,, Z_,, one
giving critical coupling between the upgoing ordinary and extraordinary waves, and
one between the downgoing waves. It has already been mentioned that when the sign
of §;is changed, the sign of f and 0, and hence of all the roots of the quartic, are changed ;
thus suppose X, and Z,, give critical coupling for the upgoing wave; if the sign of §; is
changed, it will be X, and Z, that give critical coupling for the upgoing wave. This is
clearly illustrated in, say, figure 2, where, remembering that the curves repeat sym-
metrically for negative valuesof 8, the crossing of X, and Z_at the originisclearly evident.

X, A value of X giving critical coupling for the case when Z = 0. In some cases, as 0,
increases from zero, Z, decreases and vanishes at a critical angle; at this point, the
curve for X, splits into two separate X, curves. In figure 1, a small insert shows, on a
greatly enlarged scale, how this split occurs.
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Graphs are drawn for the cases when Y = 0-5, 2 and 1 for E-W, N-S, and general azimuth
midway between, and also in the E-W case for ¥ = 0-1 to illustrate the transition to the
isotropic case when Y = 0. Figure numbers are allocated according to the scheme:

Figure1 E-W

2 N-S }Y=05

3 45°

4 E-W

| Z 1:5—08 Y=20 +‘angle of dip’ = 60°, so that n = —1,/3, in all cases.

< 7 E-W
> 8 N-S (¥=10
< o
> 9 45
e - 10 E-W Y =01
o 5 In the North-South figures it is interesting to see how the well-known coupling level,
E 8 X =1, Z=0, can represent ¢, X, and R labels. For example, consider figure 5; the root

at X = 1 represents ordinary wave reflexion until f; reaches the value at 4, given by
S= +1/{Y/(Y+1)}, where it becomes a critical coupling level with Z = 0 (X). The
second X, curve crosses the line X = 1 at the point where C? = 72, labelled B, and then at 4,,
where § = 4/, /{Y/(Y—1)}, another transition occurs, and X = 1 represents an R reflexion.
For a value of Y less than unity, (see figure 2), this latter transition does not occur.

In most of the figures it can be seen that sometimes a value of X, goes down to zero (and

would go negative had this been permitted), while the value of Z, necessary for critical
8-2
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coupling has a singularity. It can easily be shown from (9) that this must occur where
[25? = n2(C?, and propagation is in a direction perpendicular to Y. For the East-West
figures, this occurs where ; = 90°, for North—South where 6, = 60°, (sincen = —%,/3), and
midway where §, isequal to 67° 48" approximately. These points are marked D on the curves.
The effect of critical coupling at large values of Z_for small values of X, will be very important
in determining the limiting polarization of a downgoing radio wave, aslow in the ionosphere
the ordinary and extraordinary wavelength is very similar, and even weak coupling can
produce a cumulative effect (considered, for vertical incidence only, by Budden 1952).

With reference to the possibility of a resonance in the scattering of radio waves (Pitteway
1958), it is interesting to view the possibility of very large electric wave-fields in the light of
this work. Take, for example, a frequency near 2 Mc/s. Except at very oblique incidence,
the extraordinary wave is reflected low in the ionosphere well below any resonance level,
yet it is the extraordinary wave which might be expected to give large scattering wave-
fields higher up. The extraordinary wave can therefore only be present in any appreciable
quantity ifit is coupled in by some value of collisional damping approaching Z_, and this will
normally require a value of Z of order 0-1. Now it has already been shown for the isotropic
ionosphere that so large a value for Z will heavily suppress any resonance, and it seems
extremely likely that that will apply here also. Thus the only possibility of obtaining
resonance scattering will occur at angles of beyond 30° for East-West, (see figure 1), or at
any rate beyond about 15° (see figure 2). This is very important, for it means that scattering
at oblique angles may be encouraged, (it must be remembered that the angle of the scattered
wave plays a reciprocal part with the angle of the incident wave), and a tendency to form a
conical angular power spectrum with a corresponding oscillatory correlogram at the ground
may result. On the other hand, it must be remembered that absorption at the resonance
level will be very high even with Z small (Budden 1954), and this will also reduce the
scattering effect.

In concluding this section, it is interesting to examine figure 10, which illustrates the
transition to the isotropic case when Y is very small. In the isotropic case there is one
reflexion level at X = C?%, Z = 0, and one resonance level at X = 1, Z = 0, (which is easily
missed in the limiting process ¥ — 0). In figure 10, it can be seen (though the separate
branches are not easily distinguished in the graphical representation), that the reflexion
level has been resolved by the presence of the small Y into one E-reflexion level, the
o-reflexion level, and an X coupling; the resonance level at X = 1 has been split into the
second E-reflexion level, the second X/ curve, and the R curve (here constant at the level
where o = 0). This illustrates clearly that the resonance at X = 1 really is present in the
Booker quartic, and is not just a property of the full-wave solution of the differential
equations, though great care is necessary in the limiting processes ¥ — 0 and X/U->1, which
cannot be reversed.

7. NUMERICAL EXAMPLE

In conclusion, in order to illustrate some of the features of the previous work, it is inter-
esting to examine the roots of the quartic themselves as a function of X for a special case.
The case chosen corresponds to figure 2 with 0, = 45°. Propagation is from North to South,
with a frequency of 2:56 Mc/s, so that ¥ = 0-5. Curvesof g against X are plotted in figure 11
(p. 68) for zero collisional damping, so that Z = 0 everywhere.
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The coupled wave equations (Budden & Clemmow 1957) break down at no less than seven
distinct values of X, six of which give equal roots of the quartic; the seventh corresponds to
« = 0, where one of the four roots goes off to infinity. As X increases from zero, the successive
breakdowns occur at levels given by 6, = 45° on figure 2, and these are:

(i) X =0-297labelled E;

(i) X =0-577 o

(iif) - X = 0-876 R;

(iv) X =0-923 a = 0, one root of quartic infinite;
(v) X =0-9987 X.;

(vi) X=1 X/;

(vii) X =1-161 E,;

and these points are marked in figure 11, where ¢ is plotted against X. The real parts of the
four values of ¢ are denoted by a continuous line, and the imaginary parts by a broken line.
The curves are labelled O or E for ordinary or extraordinary, and U or D for upgoing or
downgoing, where appropriate.

For small values of X, the four values of ¢ are all real, corresponding to propagating
ordinary and extraordinary wave packets. Atthelevel X = 0-297 the first E reflexion occurs,
and the corresponding roots of the quartic join, and then split into a conjugate complex pair,
the real part of which is marked simply E. Provided X is supposed to increase slowly and
steadily, the full solution of the wave equations would behave like an Airy function in this
region in the usual manner at a reflexion level.

Alittle higher in the ionosphere at the point where X = 0-577 the ordinary wave packet is
also reflected, and the splitting of two roots into a conjugate complex pair is repeated. Now
both the ordinary and extraordinary waves become evanescent, and unless the gradient of
X is steep there would in fact be little penetration further into the ionosphere.

The next point of interest is at X = 0-876, where the R level occurs. Here the two roots
corresponding to the extraordinary wave, which are conjugate complex, join together and
split into two purely real values, a kind of inverted reflexion level. The behaviour of a wave
function would again be like an Airy function, only reversed. A little higher again, where
X = 0-923, one of the two real roots passes through infinity, and returns on the positive side.

In the East-West case, the level R, and this singularity where « = 0, would be super-
imposed. Both E roots would become infinite together, and would come back real, the
process of reflexion having been absorbed by the singularity. Here, the reflexion level is
moved away from the singularity and is clearly resolved. In figure 124 (p. 68), this part
of the graph is repeated on an exaggerated X scale for the extraordinary wave only, in
order that this reflexion behaviour may be made clear.

In this particular case, there are values of X corresponding to X/, which occur next as
a wave packet penetrates the ionosphere. But first it is better to change to a level high in the
ionosphere where X = 1-5 say, so that the other E-reflexion level may be examined. At
this high level, both the ordinary and the extraordinary roots of the Booker quartic occur in
conjugate complex pairs, and the corresponding wave packets are evanescent in behaviour.
This is because the extraordinary wave packet, (which becomes purely propagative at the
level X = 0-876), has again been reflected, this time at the second E level where X = 1-161.
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This is perfectly consistent with the behaviour at normal incidence familiar from the
Appleton-Hartree refractive index.

Now we consider the two X levels, here occurring close together at the levels where
X = 0-9987 and X = 1, respectively. Since these two levels are so close together, it is helpful
to examine the g curves on a greatly exaggerated X scale in figure 124. The behaviour of
the downgoing extraordinary wave is straightforward, (see the curve DE on figure 11), so
this has been omitted from 124.

The upgoing extraordinary wave couples with the two ordinary waves in a rather com-
plicated manner, and in fact consistent labelling of the two curves requires two upgoing
extraordinary waves, and only one ordinary wave, for the range 0-9987 < X < 1. There is,
of course, no singularity in the differential wave equation at either point, and the electric
wave-fields are again finite with an Airy function behaviour.

Had these curves been repeated for non-zero values of Z, it would have been found that
the downgoing extraordinary wave would be coupled in where X = 0-341 and Z = 0-875,
the requisite value of X, and Z, for this case. This is, therefore, an eighth point in the XZ
plane where the coupled wave equations would break down and the coupling become large.
Many such cases have been investigated on the EDSAC, which can find a set of solutions for
a quartic with complex coeflicients, to five-figure accuracy, in about two seconds even with
roots close together, but these are outside the scope of this paper, most of the new features
being already present in the special case of figure 11.

I would like to express my thanks to Dr K. G. Budden and Mr J. A. Ratcliffe, F.R.S.,
for many helpful discussions, suggestions and criticisms. I am indebted to the Director
and Staff of the Mathematical Laboratory, University of Cambridge, for permission
to use the EDSAC, and to Mrs M. L. V. Pitteway for assistance with heavy algebra. I was
in receipt of a maintenance grant from the Department of Scientific and Industrial
Research for the period during which the work was carried out.
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Ficure 1. Reflexion levels and coupling regions as a function of the angle of incidence for East—~West
propagation. Y has been given the value 0-5, corresponding to a radio wave of frequency
2-56 Mc/s. The curves are labelled according to the code of §6, and an insert shows how X, can
split into two values X;. The ‘angle of dip’ is 60° in this and in the subsequent figures.
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